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w e i .  De Gennes' proposal that the n + 0 limit of an O(n) symmetric 44 theory 
describes a single polymer chain in solution is extended to allow for the interactions between 
several polymer chains. To describe m interacting polymers, it is found to be necessary to 
employ an (m X n)-component field theory before taking the n + 0 limit. Explicit calcula- 
tion of the second vinal coefficient of the osmotic pressure for self-avoiding walks on a 
Bethe lattice is performed to illustrate the formalism. 

&&avoiding or self-interacting walk is an often-used model of a polymer in dilute 
solntion. The properties of such walks can be obtained from the study of the n + 0 limit 
dan n-component field theory (de Gennes 1972), and many authors (Emery 1975, 
hers and McKerrel 1973, Jasnow and Fisher 1975, Gerber and Fisher 1975, des 
Cloizeaux 1975) have shown how single-polymer properties can be derived by field- 
theoretic techniques. In this paper we shall show that the calculation of many-polymer 
properties, such as osmotic virial coefficients, requires a generalization of the 
n-amponent field theory idea. Specifically, we shall show that the calculation of the 
mndvirial coefficient, which involves the interaction of two polymer chains, requires 
afddtheory including 2n-components (before the n + 0 limit is taken). In addition we 
shall demonstrate by explicit examples how many-polymer generating functions are 
Elated to the correlation functions of the field components. 

' h e  vinal expansion of the osmotic pressure, Il, of a dilute polymer solution is 

n=kT(p+A2pZ+A3p3+.  . .), (1.1) 

*re P is the concentration of polymer (molecules/unit volume). Throughout this 
we shall adopt a self-avoiding walk model for the polymer. In which case, the 

Vkial coefficient, AZ,  of a monodisperse solution is related to the lattice 
CN and CN,N by (McKenzie and Domb 1967) 

(1.2a) 

*ewe have taken CN,N to be positive. It will also be useful to define a generalized 
wnd virial coefficient 

(1.2b) 

h?'-avoidingwalks or chains (SAW), CN is the number of iays  (per lattice site) that a 
Bo'N1inks ( ( N +  1) vertices) can be placed on a lattice such that the links lie along 
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nearest-neighbour lattice bonds and such that no site is occupied by more than 
OW 

steps 
vertex of the chain. This is, in effect, the total number of possible SAW of N 
starting from a particular lattice site. CM,N is the number of disallowed mnfimtiom 
(per lattice site) of two polymer chains of M and N links. A disallowed configurationir 
such that a SAW of each chain occupies at least one common lattice site. 

The singe-polymer lattice constant, CN, is derivable from the n + 0 limit of 
field-theoretic effective Hamiltonian (de Gennes 1972) 

(1.3) 
where there is a field variable +i = (4;, . . . ,+:) at each lattice site, i; B =  (kBq-L{h~  
represents all pairs of nearest-neighbour lattice sites; J is the (dimensionless) ‘exchange 
interaction’ in magnetic language, and hi is an applied field. The calculatiomaf 
polymer properties are performed with (1.3) and the limit n + 0, is taken, u s u a l ~ y , ~ ~  
final step in the calculation. In this limit J acts as a generating function parmeter, 
describes the interactions between monomers and the properties of the polymer can all 
be expressed as the coefficients of generating functions (Burch and Moore 1976). Inthe 
limit U + 00, with h = -un/6, (1 .3)  becomes 

H = J  1‘ i +:+p+C i 4:hf’, 
(ij) p= 1 i p = l  

with the constraint on the field variables at each site, i, 
n 

1 & ‘ & ‘ = n .  
p = l  

Equation (1.4) describes a polymer with only self-avoiding configurations permitted. 
Two important correlation functions of the field #J of (1.4) are 

jkl 

where c denotes the cumulant or connected part. These may be expanded in poweBoi 
J, and are, as we shall see, generating functions of polymer properties. For example 

(1.8) 

(Burch and Moore 1976). 
The layout of this paper is as follows. In 0 2, the technique of McKenieandDomb 

(1967) for calculating the lattice constants CM and CM,N is outlined and used forsAwoo 
a Cayley tree. The advantage of using this lattice is that the SAW problem may besolved and exactly for all lengths of walk. In 0 3, we calculate the correlation functionsX(n 
GAJ) using the ‘Feynman graph technique’ of the appendix, and show thatX is indeed 

K in G~ are just the generating function for the C, and that the coefficients of J 
%=o CI.K--I. Given G4(J) alone, there is no means in principle of obtaining doeS 
However, the interesting many-polymer formalism of des Cloizeaux 

K 
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e a t e M q u e  of determining C M , ~  in the limit of N +  00, M / N  finite from G4(J). 

One is interested in the approach to this limit. An example is the ’crossover’ 
&%mof*e expansion factor a which describes the size of a chain relative to its size 
at the 8 temperature (Burch and Moore 1976). One therefore needs in principle a 

general formalism than that of des Cloizeaux. This is provided in 8 5,-where the 
Ooe-polym er Hamiltonian (1.4) is generalized to describe two polymers by placing two 
, a p w n t  fields at each lattice site and assigning a different generating function 
-eter to each polymer. A new form of G4 is then found to be the generating 

of C,,w Finally, there is a discussion of the results in 8 6. The appendix 
a n b m  the procedure we have used to expand the correlation functions in 60 3 and 5 .  
11 c&sts of a graphical form of Taylor series expansion-the method of semi- 
irrrarants. 

PI0 is illmmted by an eXaInple in 8 4. Unfortunately in many situations in polymer 

2 ’Ik Wee constants on a Cayley tree 

infmite Cayley tree with coordination number q (to be referred to as a general 
&y]ey tree) consists of an infinite number of lattice sites all with q nearest neighbours 
connected by lattice bonds, such that there is one and only one path of bonds w ” n g  
anytwo particular sites. Thus there are no closed loops of bonds which enables the SAW 
problem to be treated exactly for any length of walk. 

The McKenzie-Domb method of calculating CM,N is as follows. One configuration 
oat of the C, allowed configurations of a chain of length M links is placed on the lattice 
with one of its end vertices at a particular lattice site. One of the CN allowed 
configurations of the other chain, with one of its end vertices chosen as the ‘origin’ 
vertex, is then moved about on the Iattice so that the origin vertex occupies each lattice 
site in turn. This is called a ‘comparison’, of which there will be a total of CMCN. In each 
@ m P a I “  a certain number of disallowed configurations will occur, and CM,N is 
defined to be half of the sum of the number of disallowed configurations from each 
“Parison. The sum must be halved because each configuration of the two chains 

in two comparisons. 
The values of C, and CM,N on the general Cayley tree are easily calculated: 

c, = q(q - lyl, M>O, (2.1) 

(2.2) ‘U‘b?(4- 1)M+N-2[(q - 2)MN+ g ( M +  N) + q] ,  M>O, N>O, 
with 

co= 1, 

C0.M = CM.0 =4(M+ l )q(q  - l y - l ,  

A 2””= ${[(q - 2)MN/q] + M + N+ 1). 
la limit Of large M and N we have for q 2 3 

(216) 
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of-&, m e  q = 2 Cayley tree is just the one-dimensional lattice, and in the 1 s t  
and N, AyN for q = 2 can be seen from (2.6)’to depend only on the total 
two chains. 

#& 

3. “he correlation fnnctions x(J) and G4Q 

The relationship of the field correlation functions x(J) and G4(4 defined by (1 .6)d 
(1.7) to C, and C,, may be illustrated by expanding x and G4 as Taylor series in 
generating function parameter,J: A convenient technique of expansion is &e 
‘high-temperature’ series expansion summarized in the appendix. 

The graphs to order J’ for x are given in figure 1, and those to the same or&rfor(i, 
are given in figure 2. By embedding the graphs for both x and G4 contributingtoad 
order on a general Cayley tree and evaluating their contributions according tothe& 
1 of the appendix, one finds 

X(J) = 1 +qJ+q(q - l)J’+q(q - 1)2~3+. . . = (1 +am- (q - 1)4 (3.1) 

G4(J)= 4 1  +4qJ+(10q2 - 8q)J’ + (20q3 -36q’ + 16q)J3 + . . .] 
(6q2- S4)J2+(4q3 - 12qz+8q)J3 

-(q4-4q3 + 5q2 - 2 q ) ~ ~ / [ i  - (9 - 1)~3~}.  

x(JI,= C C K ~ K ,  (3.3) 

( 3 4  
in J K  will be called the Kth term of the series and for x this is q(q -l)K-’.?, 
is clearly the generating function of SAW: 

K=O 

where CO= 1 and CK = q(q - l)K-ly K > O  (see (2.3) and (2.1)). 

I I 

(01 (6) ( C) cd) 

1. The graphs contributing to x(J) to order J2. These graphs are evaluated in **, 

i i+L I L?-+ r i  

Figme 2. The graphs contributing to G4(J) to order J2 
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ha similar fashion for G4, one may write 

(3.7) 1 
go =5. 

amterpretation of gK in terms of the lattice constants &,, is not obvious, but one 

go = co.0, (3.8) 

g, = C0,I + G o ,  (3.9) 

by inspection 

gz= co.z+ c1.1 + cz.0, (3.10) 

ad, in general, 

(3.11) 

itisimpossible to extract the exact form of CM,N from gM+N, and the best one can hope 
todoisobtain its asymptotic form for large M, N. For q 3 3 one might assume that the 
h of C,, is (McKenzie and Domb 1967) 

C M , N  = AWN)', M, N+m.  (3.12) 
wating(3.5) and (3.12) into (3.1 1) and takingthe large-#limit, where K = M+N, 

K 
$q(q- I)"-'K3(q -2)/6 = 1 A[I(K-I)I . 

I = O  

bghgthe sum to an integral and letting I= Kx, (3.13) becomes 
1 

4q(q - l)K-ZK3(q - 2)/6 = AKz'+' lo [x(x - l)]' dx. 

(3A3) 

(3.14) 

hexponents of K indicate that r =  1, and one finds that A =i(4-.1)MfN-z(q-2). 
@ation of these values into (3.12) produces 

CM.N = &(4 - 1)'+N-2(q - 2)MN, M, N+m, (3.15) 
@isconsistent with (2.2). 

-des ~oizeaux formalism 

b"k"'n.e of des Cloizeaux (1975) enables 'one to fiild. the large-M, large-N 
*hCbehaviour of C,, without requiring explicitly the Kth term of the Taylor 

'of their generating functions. For this special (but important) limit, it 
the need for the more complicated formalism of 0-5. We sh'all just illustrate 
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% how the des Cloizeaux formalism gives the correct asymptotic behaviour for 
trees. 

In the des Cloizeaux (1975) formalism, the virial expansion of the ~moticpresstw 
is 

(4.1) 

(4.2) 
(4.3) 

Notice that the large-N limit in a dilute solution is studied by taking the kt 
J + ( q  - I)-' = Jc, the nearest singularity of the generating functions. The XmndW 
coefficient defined by (4.1) is, in the large-N limit, 

A~ = (4 - 2)~'/24. (4.4) 
This a p e s  with (2.7). It is in fact a simple matter to show directly from the des 
Cloizeaux formalism that it will always yield the correct behaviour for the asymptotic 
behaviour of any virial coefficient. However, corrections to asymptotic behaviour 8 

required for studies of Az near the 0 point require in principle explicit calculationsd 
CM.N.  

5. n = 0 field theory for two polymer chains 

The difficulties in obtaining CM.N from the generating function G4(J) are due to the fad 
that the Hamiltonian (1.3) essentially describes only a single polymer chain satisfac- 
torily whereas CM,N relates to two chains. By assigning a different generating fundon 
parameter J, and J, to each polymer, and by placing two n-component fields, 
4; = (4!-, . . . , +?) and 47 = (+!., . . . , 4yo)  (or equivalently one 2n-component fierd 
@i= (4i, . . . ,4f")) at each lattice site, the Hamiltonian (1.3) can be generalized to 
describe two polymer chains. The generalization of (1.4) for SAW is 

H=J, 1 2 &'@'+J, 

with the constraint at each site, i, 

$ t$p4p+c 2 &'hy+c $ r#~:hP, (5.1) 
(ij) p = L  ( i j )  p = l g  i p = l ,  i p = l @  

f 4:4y+ 2 4:47=2n. 
P = l n  P = l g  

The following correlation functions may be defined: 

(5.21 

(5.4) 

'On5@ where S is either a or p. The Taylor series expansions of these correlation fun&. 
be obtained by the 'high-temperature' series expansion technique of the aPFndvt 
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toordec J:; JJ,; Ji which might contribute to x(J,) are given in figure 3. By 
h e  contributions of the graphs for x(J,) according to the rules 2 of the 

+$one finds that x(Jd  is independent of JB in the n + 0 limit and is identical to 
,epe s d d y ,  G4(Ju) may be shown to be independent of J, in the II +,.limit and 
antid to G4(J). The graphs to order J,; J, contributing to G4(Ju, J,) are given in 
w4, Embedding the graphs for G4(J,, J,) on a general Cayley tree and working out 
wmnmbutions according to the rules 2 in the appendix yields 

G,(jmJp) = 4 1  + 2qJu + 2qJ, + 3 d q  - l)Ji+ 2q(2q - 1>JJ, + 3q(q - 115; + . . -3. 
(5.6) 

'he 
(**2)shOWs that this is just CM". Thus 

in J?.$ will be called the (MN)th term of the series, and comparison with 

(5 ..7) 

Lc-sion 

:&Pwrit has been shown that the correlation functions x(Js)  and G4(J,, J,) of a 
?Nnent field theory in which the limit n + 0 has been taken, are the generating 

Of the lattice constants CM and CMTN respectively. The results have been 
for self-avoiding configurations on a Cayley tree, but are expected to 
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CQ-m 
apply for all values of U in (3.1) and on all lattices. In general, the latti 
C,(U) and C,,,(U) may be determined as the Mth and ( W t h  t e m  of thesdd 

to 2a. 
correlation functions (5.3) and (5.5) for the Hamiltonian (1.3) gene- 
components. The second virial coefficient, AFN(u), of the polymers 
tion, y between their monomers is then given by 

(6.1) A,MN(u) = C,N(U)/~M(U)~N(U). 

Systems of m interacting polymer chains obviously may be described by 
generalizing the Hamiltonian ( 1.3) to (m X n) components and introducing 
ing function parameters J,, J,, . . . . 
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In this appendix the formalism of graphical ‘high-temperature’ expansion is sma- 
marized, and we show that the correlation functions ,y and G4 can be expresedm 
graphical form, with the contribution of each graph evaluated according to a set of 
‘Feynman’ rules (Wortis et a1 1969). 

The partition function, Z(J, h) of the self-avoiding one-polymer Hamiltonian (1.4) 
is 

(AN Z(  J, h) = Tr eH. 

The ‘high-temperature’ expansion is a form of Taylor expansion in which InZ 
expanded in powers of J about J =  0. The term in J“ is represented as the 
contributions from a11 topologically distinct connected graphs with K lines l a h a  
(p ,  4,. . .). These labels represent components of the n-component field theory. 

In terms of the partition function, the correlation functions (1.6) and (1.7) are 

(A31 

d The effect of each differentiation with respect to h is to add an external leg to avertex 
each graph for In 2. The legs are represented by wavy lines and labelled SO that 
representing differentiation with respect to hk is labelled with its component labe‘ 
The vertex to which this leg is attached is labelled m, and any vertex with one Or ?’ 
legs attached is called external. When all the legs have been attached, the rem- h d f  

CtteaU 
internal vertices are assigned dummy labels in some arbitrary manner- AkPp 
external vertices is called r-rooted. The two legs for x and four for G4 are 

the@ the In 2 graphs in all topologically distinct ways, and ,y and G4 are calculatedas 
sf contributions from all their respective graphs. 
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evaluation of the graphs requires the calculation of the zero-field bare semi- 
@ hereafter simply called semi-invariants) of order 1 defined by * 

M ( m ;  p ,  4, * - -No = 
' (A.4) 

rbere ~ ( h )  = ~ ( 0 ,  h); p,  4 etc may be any of the n components, 1 is the total number 
d ~ d  components, and m is a vertex label. 

~h ,-rooted graph whether for x (1 S r G 2 )  or G4 (1 C rC4) is evaluated 
recording to the following rules. 

Rnlcsl 
(b) For each vertex, labelled my write a factor M ( m ;  p, 4 , .  . .)lo, where 1 is the 

mbr of lines and external legs terminating at the vertex and (p, 4,. . .) are their 
"pen t  labels. 

(c) sum the component label of each fine freely over its n possible values. 
(n) sum all the internal vertices and the external vertices j ,  k, 1, over all lattice sites, 

&keep the external vertex, i, rooted. 
(e) Divide by the symmetry factor appropriate to the r-rooted graph (this is the 

mbr of ways that the lines and internal vertices of the graph can be interchanged 
without altering its topology.) 

Thesummation of all the vertices except the one Iabelled i, over all the lattice sites is 
cqnivalent to the number of ways of freely embedding the 1-rooted graph in the lattice 
suthat the lines lie between nearest-neighbour lattice sites. A free embedding allows 
aynumber of vertices to be assigned to the same lattice site. 

In practice a large number of graphs can be omitted because they give zero 
mntribntion. The function In & is an even function of h ;  thus any semi-invariant 
-g an odd number of any particular component is zero. For example 

171, 2,3110 = @(m; 2,2,2)10 = 0. As a result, any graph with an odd number of 
bandexternal legs at any vertex has a zero contribution. The graphs contributing to 
wlr)andG,Q to order J' are shown in figures I and 2 respectively. The co'ntributions 

graphs (a)-(d) in figure 1 are given in table 1. The semi-invariants are 

For each line write a factor J. 

Table 1. The evaluation of the graphs contributing to x(J) in figure 1 according to rules 1 of 
the appendix. Only the non-vanishing terms in the sum over component labels of rule l(c) 
are given. 
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a-& 

lnZo(h)=C i [In la 4 ( p=l  l? d9f) exp p =  f 1 &”( p =  1 g;4:-.)]. (As, 

determined according to (A.4). For the Hamiltonian (1.4) and writing the 
(1.5) as a 6 function 

In the limit n + 0 

In z 0 ( h )  =I In( 1 +f f (hn’), 

m m ;  P, PI10 = 1, 

m m ;  P, P, p,  d l 0  = -3, 

~ ( ~ ; P 7 P , q , q ) l o = - 1 ,  

i P = l  

and the n + 0 semi-invariants are, to order four, 

with the general result 

X! Y!  
(X/2)!2”2 (y/2)!2’i2. . ’ M ( m ;  xp, yq, . . .)lo = ( - - 1 ) + y +  l)! 

where X, y etc are the (even) number of times the components p ,  q etc are speciseain 
the semi-invariant (thus x + y +. . . = I). 

For the self-avoiding two-polymer Hamiltonian (5.  l), the partition function is 

- Z(3a, J,, h )  =Tr eH. (All) 
In Z may again be expanded in powers of J, and J, about J, = J, = 0. The term 
is represented as the sum of contributions for all topologically distinct connectedgraph 
with M lines labelled (p,, qa, . . .) (to be referred to as a lines) and N lines iabeued 
(p,, q,, . . .) (/3 lines). These labels represent components of the field theory such that 
there are n possible components subscripted a, and n possible components subsaipted 
B. 

In terms of the partition function, the correlation functions (5.3), (5.4) and (5.5)m 

The external leg representing differentation with respect to h k  isdedaSlegaod 
the semi-invariant of order 1 is defined by 

where Zdh)  = Z(0, 0, h); pa, p ,  etc may be any of their respective sets of n 
and is the total number of components specified. 

rules. 
Each r-rooted graph whether for x or G4 is evaluated according to the fo’oa 
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each Mine write a factor J6. 
reachvertex, labelled m, @e a factor M%m; pa, qa, . . . , p,, q,, . . .)lo where 

,$ be number of lines and external legs terminating at the vertex and 

(cl sum (4 sum di the internaI vertices and the external vertices j ,  k, 1, over all lattice sites, 
keep be external vertex, i ', rooted. 

Divide by the symmetry factor appropriate to the r-rooted graph. (When 
a a h g  the symmetry factor an a line must never be interchanged with a p line.) 

e n ,  a large number of graphs can be omitted because they have a zero 
mintion. There are two distinct causes of this: ( a )  as before, any semi-invariant 
d n g m  odd number of any particular component is zero, and so any graph with an 
lnmberof lines and external legs at any vertex has a zero contribution. Further any 
&with an odd number of a lines and a legs or p lines and p legs at any vertex also 
bazerocontribution. ( b )  In the spirit of the original argument of de Gennes (1972), 
qgraph which contains an isolated loop of 6 lines has a free sum over the n possible 
gqnents, and has a zero contribution in the limit n + 0. An isolated loop of, say, a 
b is not connected directly or by any connected sequence of a lines to an a leg. 

It is for these reasons that x(Ja) ,  say, does not depend on J,. Since the graphs 
mhiuhg to ,y(J.) have two a legs, any B lines in the graphs will produce either at 
Mtwoverticeswith an odd number of /3 lines or isolated loops of p lines. Such graphs 
Baveazero contribution. 
fie semi-invariants are determined by (A.15). Using the two-polymer Hamilto- 

b(5.1) and writing the constraint (5.2) as a S function, one finds that the semi- 
htsareidentical to (A.7), (A.8) and (A.9) with the general result (A.10), but now 
plyetcmaybe any of the 2n components (la,. . . , n,, l,, . . . , n,). 

, . .) are their component labels. gc ... ,Ps 4 
component label of each line freely over its n possible values. 
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