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Field-theoretic formalism for several polymers

D J Burch and M A Moore ‘
School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton BN1
9QH, UK

Received 26 August 1975, in final form 5 November 1975

Abstract. De Gennes’ proposal that the n-~>0 limit of an O(n) symmetric &t theory
describes a single polymer chain in solution is extended to aliow for the interactions between
several polymer chains. To describe m interacting polymers, it is found to be necessary to
employ an (m X n)-component field theory before taking the » -0 limit. Explicit calcula-
tion of the second virial coefficient of the osmotic pressure for self-avoiding walks on a
Bethe lattice is performed to illustrate the formalism. .

1, Introduction

The self-avoiding or self-interacting walk is an often-used model of a polymer in dilute
whution. The properties of such walks can be obtained from the study of the n - 0 limit
o an n-component field theory (de Gennes 1972), and many authors (Emery 1975,
Bowers and McKerrel 1973, Jasnow and Fisher 1975, Gerber and Fisher 1975, des
(oizeaux 1975) have shown how single-polymer properties can be derived by field-
theoretic techniques. In this paper we shall show that the calculation of many-polymer
poperties, such as osmotic virial coefficients, requires a generalization of the
r-<omponent field theory idea. Specifically, we shall show that the calculation of the
soond virial coefficient, which involves the interaction of two polymer chains, requires
afild theory including 2n-components (before the n - 0 limit is taken). In addition we
dall demonstrate by explicit examples how many-polymer generating functions are
rlated to the correlation functions of the field components.
The virial expansion of the osmotic pressure, I1, of a dilute polymer solution is

M=kT(p+A,p*+Asp>+..)), (1.1)

Mere p is the concentration of polymer (molecules/unit volume). Throughout this
Rper We‘s.hall adopt a self-avoiding walk model for the polymer. In which case, the
%oond virial coefficient A,, of a monodisperse solution is related to the lattice

4

Wistants Cy and Cy, by (McKenzie and Domb 1967) :
A= CN,N/Clzv, (1.2a)

;:re we %lave taken Cy v to be positive. It will also be useful to define a generalized
nd virial coefficient

AN=Cyn/CilCn (1.2b)

Forsart o o o '
§e§ aN"O}dmg walks or chains (saw), Cy is the number of ways (per lattice site) thata
links (N + 1) vertices) can be placed on a lattice such that the links lie along
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nearest-neighbour lattice bonds and such that no site is occupied by more than g
vertex of the chain. This is, in effect, the total number of possible saw of 5 -
starting from a particular lattice site. Cyyn is the number of disallowed configuraion
(per lattice site) of two polymer chains of M and N links. A disallowed configuration
such that a saw of each chain occupies at least one common lattice site,

The single-polymer lattice constant, Cy, is derivable from the n -0 fimit of the
field-theoretic eflective Hamiltonian (de Gennes 1972)

n n n 2 n
H=-p=13 § #7723 ¥ otor-w/anz (L o00?) +3 § g
{ify p=1 i p=1 i ‘p=1 i p=1 ’
(13
where there is a field variable &; =(6/, ..., ¢7) at each lattice site, i; B = (ksT) (5
represents all pairs of nearest-neighbour lattice sites; J is the (dimensionless) ‘exchange
interaction’ in magnetic language, and h; is an applied field. The calculations of
polymer properties are performed with (1.3) and the limit n - 0, is taken, usually, as the
final step in the calculation. In this limit J acts as a generating function parameter, y
describes the interactions between monomers and the properties of the polymer canall
be expressed as the coefficients of generating functions (Burch and Moore 1976). Inthe
limit u - o0, with A =—un/6, (1.3) becomes

H=JY'Y ¢f¢7+Y ¥ o%h, (14

(i) p=1 i p=1

with the constraint on the field variables at each site, i,
Y ¢ioi=n (13
p=1

Equation (1.4) describes a polymer with only self-avoiding configurations permitted.
Two important correlation functions of the field ¢ of (1.4) are

XD =L ($i¢))e (18
]
and
G.()=3 %(¢?¢}¢i¢}>c, (L)

where ¢ denotes the cumulant or connected part. These may be expanded in powers of
J, and are, as we shall see, generating functions of polymer properties. For example

xJ) =§1CMJM (18)

(Burch and Moore 1976). b
The layout of this paper is as follows. In § 2, the technique of McKenzie and D™
(1967) for calculating the lattice constants Cy, and Cy, y is outlined and used forsawol
aCayley tree. The advantage of using this lattice is that the saw problem may
exactly for all lengths of walk. In § 3, we calculate the correlation functions X\ g
G.(J) using the ‘Feynman graph technique’ of the appendix, and show that x1s e
the generating function for the C,,; and that the coefficients of J¥ in _Gﬁ are | ,
to0 Crx—1. Given G,(J) alone, there is no means in principle of obtaiiné dﬁg
However, the interesting many-polymer formalism of des Cloizeaux {1

be solved
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vide atechnique of determining Gy, in the limit of N > o, M]/ N finite from G,(J).
s i lustrated by an example in § 4. Unfortunately in many situations in polymer
s one is interested in the approach to this limit. An example is the ‘crossover’
pehaviour of the expansion factor & which describes the size of a chain relative toits size
ot the 8 temperature (Burch and Moore 1976). One therefore needs in principle a
more general formalism than that of des Cloizeaux. This is provided:in § 5,-where the
one-polymer Hamiltonian (1.4) is generalized to describe two polymers by placing two
a-component fields at each lattice site and assigning a different generating function
parameter {0 each polymer. A new form of G, is then found to be the generating
function of Gy~ Finally, there is a discussion of the results in § 6. The appendix
contains the procedure we have used to expand the correlation functions in §§ 3 and 5.
It consists of a graphical form -of Taylor series expansion—the method of semi-

invariants.

2. The lattice constants on a Cayley tree

An infinite Cayley tree with coordination number g (to be referred.to as a general
Cayley tree) consists of an infinite number of lattice sites all with g nearest neighbours
connected by lattice bonds, stich that there is one and only one path of bonds connecting
anytwo particular sites. Thus there are no closed loops of bonds which enables the saw
problem to be treated exactly for any length of walk.

The McKenzie~Domb method of calculating Cyy v is‘as follows. One configuration
outof the Cy, allowed configurations of a chain of length M links is placed on the lattice
with one of its end vertices at a particular lattice site. One of the Cy allowed
configurations of the other chain, with one of its end vertices chosen as the ‘origin’
vertex, is then moved about on the lattice so that the origin vertex occupies each lattice
sitein turn. This is called a ‘comparison’, of which there will be a total of Cy,Cy. In each
comparison a certain number of disallowed configurations will occur, and Cy, y is
defined to be half of the sum of the number of disallowed configurations from each
compa{ison. The sum must be halved because each configuration of the two chains
oceurs in two comparisons.

The values of C,, and Cu~n on the general Cayley tree are easily calculated:

Cu=q(g—1)™", M>0, - 2.1)
Gv=lalg-DM*N(q-D)MN+q(M+N)+ql,  M>0,N>0, 2.2)
with :

G=1, | (2.3)

Corm=Cuo=3(M+1)gq(g—1)""", (2.4)

Coo=1. 2.5)
Thegeneralized second virial coefficient from (1.2), (2.1) and (2.2) for two polymers of

Mand N is then
AY™=3{{(g~2)MN/q]+ M+ N+1}. (2.6)

In .,
the limit of Jarge A ang N we have for ¢ =3
A7"=(q-2)MN/24 @
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‘The g = 2:Cayley tree is just the one-dimensional lattice, and in the limit of
and N, AX™ for:qg=2 can:be seen from(2.6) to-depend only on the tota] length ofthe
two chains.

3.. The correlation functions x(J) and.G,(J)

The relationship of the field correlation functions x(J) and G,(J) defined by (1.6) and
(1.7) to Cy and Gy~ may be illustrated by expanding x and G, as Taylor series in the
generating furiction parameter, J. A convenient technique of expansion is the graphicg]
‘high-temiperature’ series expansmn summarized in the appendix.

-~ The graphs toorder J* for y-are given in figure 1, and those to.the same orderfor G;
are given in figure 2. By embedding the graphs for both y and G, contributing to each
order on a general Cayley tree and evaluating their contributions according to the rules
1 of the appendix, one finds

x()=1+qI+q(q- DI +q(q~1*P+...=(1+D/[1-(g-1)J] (1)
G()y= —5[1+4qJ+(10q —-8¢)J*+(20g° —~36q +16q)J3+ ]
{1+[4qJ (6q ~8q))2+(4q° ~12¢ 24+8¢)J
~(q*-4¢>+5¢*-29)3*)/[1- (g~ DT (32

The term in J* will be called the Kth term of the series and for y this is g(g—1)*""/%,

K>0.xis clearly the generating function of SAW:
x()= Z CI*, (33

where Co—land CK q(q 1)“ L, K>0 (see (2.3) and (2.1)).

| | | | 1 1

. § % P g §

7 '1‘ P . / ‘('v r / . P » q ,
| v |

@ 4y ) ()

Figuie 1. The graphs contributing to x'(J) to order J2. These graphs are evaluated in table L

L S =

oo et Lol
Lofle Lo

Figure 2. The graphs contributing to G,(J) to order P
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jna similar fashion for G, one may write
Gh)=- Z gKJK: 4)
K=0
shere the K'th term is

f%q(q_1)“‘2(K+1){[(K2+5K+6)q/6]—[(K2—~K+6)/3]},' K>1, (3.5)

g,=()44q, (3.6)
go=1. (3.7)

Theinterpretation of gx in terms of the lattice constants Cy is not obvious, but one
finds by inspection

g0=Coo, (3.8)
gi=Co1+ Cio, (3.9)
2:=Co2+Ci1+Crp, (3.10)
md, in general,
K
& = IZ.O Ck-1- (3.11)

Hisimpossible to extract the exact form of Cyy,n from gas., and the best one can hope
dois obtain its asymptotic form for large M, N. For ¢ =3 one might assume that the
form of Cy, v is (McKenzie and Domb 1967)

Cun=A(MNY, M,N-co. (3.12)
Sabstituting (3.5) and (3.12) into (3:11) and taking the large- X limit, where K = M+ N,

K
1(q-1*7K(q-2)/6= L AUK-D]. (3:13)
(banging the sum to an initegral and letting I = Kx, (3.13) becomes
1
q(q—-1)*2K*q-2)/6=AK>"" f [x(x—-1)] dx. (3.14)
o]

me{‘POflents of K indicate that r=1, and one finds that A =¥g—-1)"*"""(g-2).
ttion of these values into (3.12) produces

Cun=39(g—1)"""*q-2)MN, M, N~ co, .1
Wich s consistent with (2.2).

4 Tee deg Cloizeaux formalism

km‘f"que of des Cloizeaux (1975) enables ‘one to find. the large-M, large-N
ticbehaviour of Cy.~ Without requiring explicitly the Kth term of the Taylor
ot th'—‘éf' their generating functions. For this spécial’ (but important) limit,. it
Hi€need for the more complicated formalism of §5. We shall just illustrate
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how the des Cloizeaux formalism gives the correct asymptotic behaviour for Cayky

trees.
In the des Cloizeaux (1975) formalism, the virial expansion of the osmotic Pressure

is

L=kT(p~(G/X*Np’+ .. ] “y

where, in the limit of a dilute solution, J is related to N by
N=Jalnx()/aJ 42
=Jg/{(1+N)[1-(g—DJI}. 43)

Notice that the large-N limit in a dilute solution is studied by taking the limj
J->(q- 1)"' =, the nearest singularity of the generating functions. The second virig
coefficient defined by (4.1) is, in the large-N limit,

A,=(g—2)N*/2q. (44

This agrees with (2.7). It is in fact a simple matter to show directly from the des
Cloizeaux formalism that it will always yield the correct behaviour for the asymptotic
behaviour of any virial coefficient. However, corrections to asymptotic behaviour as
required for studies of A, near the © point require in principle explicit.calculations of

CM,N‘

5. n=0 field theory for two polymer chains

The difficulties in obtaining C,,~ from the generating function G,(J) are due to the fadt
that the Hamiltonian (1.3) essentially describes only a single polymer chain satisfac-
torily whereas Gy y relates to two chains. By assigning a different generating function
parameter J, and J; to each polymer, and by placing two n-component fields,
di=(dl=, ..., ¢ ) and df=(d!*, ..., $7) (or equivalently one 2n-component fel,
&;=(},..., ") at each lattice site, the Hamiltonian (1.3) can be generalized to
describe two polymer chains. The generalization of (1.4) for saw is

H=J 3 ¥ ¢fof+L L Y o047+3 ¥ ofhi+3 3 o0Hl, 61
(i) p=la (i) p=1p i p=la i p=lg
with the constraint at each site, i,
S ofer+ ¥ erer=2n 62
pP=la p=lg
The following correlation functions may be defined:
X =L {616}9., S
1
. 4
G =1 (619} 01619, o
)
.63

GilJe J5) =3 % (Di1*d;“d1°d1%c
]

P . : jonscah
where § is either a or B. The Taylor series expansions of these correlation function®
be obtained by the ‘high-temperature’ series expansion technique of the appen
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1o ordet. 72 T s J, fg which might contribute to y(J,) are given in figure 3. By
ating the contributions of the graphs for x(J,) according to the rules 2 of the
 adix, one finds that x(J,) is independent of J; in the n - 0 limit and is identical to
. Similarly, Ga(J,) may be shown to be independent of J, in the 1 - 0.limit and
geatical to GalJ)- The grapbs to order J,; Jg contributing to G,(J,, Jp) are given in
4, Embedding the graphs for G,(J,., J) on a general Cayley tree and working out

their contributions according to the rules 2 in the appendix yields -

Gl Jp)=—H1+24). +2q)g +3q(q—1)I+2q(2q~ 1)IJg +3q(qg - DJ5+.. )

[0‘ |¢ lg In: Ie{
. 2 2 g A A
/ i Ji f / {
le , l %
- !
lg: e‘ Iat pﬂ gl"‘ o q %M
l’ l' I- o« (-4 /
q r
loe 8 lo ® ] ]
o loe ot e o lee
le al {a_a} $a_af
/ 7 Y/ lAam 7 7 / r AR
Figure 3. The graphs contributing to x(J,,) to order J%; J,Jg; J3.
lu ‘5 \n{ ‘“ lo ™
/ lg 2 A ]
{ / i /
[
Wil gt b s
le A . 3 Pe l¢ .
{ g
'-%—Lﬁ/ L+j ,
lo ™

Figure 4. The graphs contributing to G,(J,, Jg) to order J; Jp.

(5.6)

The term in 2‘1’; will be called the (MN)th term of the series, and comparison with

(2 shows that this ;s just Cpn. Thus

Ol de)== L ¥ GunliJs. | (5.7

M=0N=0
& Condlusion

iy ' , . :
mll’aper 1t has been shown that the correlation functions x(Js) and G,(J,, J) of 2
%mefent field }heory in which the limit n - 0 has been taken, are the generating
%ed 0f the lattice constants Cys and Cyyn respectively. The results have been

explicitly for self-avoiding configurations on a Cayley tree, but are expected to
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apply for all values of u in (3.1) and on all lattices. In general, the latfice oo

Cu(u) and Cyn(u) may be determined as the Mth and (MN)th terms.of the fiig
correlation functions (5.3) and (5.5) for the Hamiltonian (1.3) generalized 1 7,
components. The second virial coefficient, A3 (u), of the polymers with ag imem'
tion, u, between their monomers is then given by ’

AY™u) = Cun()/ Crr()C(u). « 63

Systems of m interacting polymer chains obviously may be described by further
generalizing the Hamiltonian (1.3) to (m X n) components and introducing m generat.
ing function parameters J,, Jg, . . . .
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Appendix

In this appendix the formalism of graphical ‘high-temperature’ expansion is sum-
marized, and we show that the correlation functions x and G, can be expressed in
graphical form, with the contribution of each graph evaluated according to a set of
‘Feynman’ rules (Wortis et al 1969).
The partition function, Z(J, h) of the self-avoiding one-polymer Hamiltonian (1.4)
is
Z(J, h)=Tre". ' Al

The ‘high-temperature’ expansion is a form of Taylor expansion in which InZ
expanded in powers of J about J=0. The term in J* is represented as the sum of
contributions from all topologically distirict connected graphs with K lines labelled
(P, g, . . .). These labels represent components of the n-component field theory.

In terms of the partition function, the correlation functions (1.6) and (1.7) are

& In Z(J, h) A
xN=T = (
T 0hioh] n—o
1o 3InZ{J,h) k)
G =S - = (A.
) G%ah}ah} hidhylpmg
The effect of each differentiation with respect to h is to add an external leg “’t; vtetrf:;
2

each graph for In Z. The legs are represented by wavy lines and labelled so
representing differentiation with respect to k., is labelled with its component 2 "
The vertex to which this leg is attached is labelled m, and any vertex with one O;D;?ng
legs attached is called external. When all the legs have been attached, the ©Eme.2
internal vertices are assigned dummy labels in some arbitrary manner. A grap 0
external vertices is called r-rooted. The two legs for y and four for. G, a1 amth an
theln Z graphs in.all topologically distinct ways, and y and G, are calculated 25t
of contributions from all their respective graphs.
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mevaluation of the graphs requires the calculation of the zero-field bare semi-
wqriants (hereafter simply called semi-invariants) of order / defined by -

_ ' InZyh)

BT T (A4)

M?(m; pa q.. ')IO

ahere Zo(h) = Z (0, h); p, q etc may be any of the n components, [ is the total number
depecified components, and m is a vertex label.

Each r-rooted graph whether for ¥ (1sr<2) or G, (1=<r=<4) is evaluated
soording to the following rules. A . e R

Rules 1

(a) For each line write a factor J. ‘

{b) For each vertex, labelled m, write a factor M{(m;p,q,.. ), where ! is the
gamber of lines and external legs terminating at the vertex and (p, g, . ..) are their
waponent labels. o

{c) Sum the component label of each line freely over its n possible values.

(d) Sum all the internal vertices and the external vertices j, k, I, over all lattice sites,
Wtkeep the external vertex, i, rooted. o o h

(¢) Divide by the symmetry factor appropriate to the r-rooted graph (this is the
mmber of ways that the lines and internal vertices of the graph can be interchanged
without altering its topology.) . ' T

Thesummation of all the vertices except the one labelled i, over all the lattice sites is
equivalent to the number of ways of freely embedding the 1-rooted graph in the lattice
wthatthe lines lie between nearest-neighbour lattice sites. A free embedding allows
ay sumber of vertices to be assigned to the same lattice site. ' c v

In practice 2 large number of graphs can be omitted because they give’ zero
anibution. The function In Z, is ‘an even function of h; thus any semi-invariant
ontiining an' odd number of any particular component is zero. For example
im;1,1,2,3)o=M3(m; 2, 2, 2)|o=0. Asaresult, any graph with an odd number of
Besandexternal legs at any vertex has a zero contribution. The graphs contributing to
t)ad G,(J) to order J* are shown in figures 1 and 2 respectively. The contributions
& the graphs (a)(d) in figure 1 are given in table 1.: The semi-invariants are

Table 1. The evaluation of the graphs wﬁtrib&dﬁg to x(J) in figure 1 according to rules 1 of
the appendix. Only the non-vanishing terms in the sum over component labels of rule 1(c)
are given. .

Graph in figure 1" :Contribution .

(@ MY, Dl

(&) T5 M3 1, DloM33 1, Dlo

) - %ﬁzpzl M3 1,1, p, p)loM3(r; p, Mo

@ : J’)@M‘z’(};1,'i>loM;’<f;v1,1,)loA42(r; 1o,
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determined according to {A.4). For the Hamiltonian (1.4) and writing the copstra:
(1.5) as a & function straing

iz = [ [ (11 aof)exo £ otnra( £ otorn)] g

p=1

In the limit n >0

N e '
and the n - 0 semi-invariants are, to order four,
Ma(m; p, plo=1, | (A7)
Mi(m;p,p,q, Qlo=-1, ’ ' o A9
with the general result '
_ . x! !
M 3,38, Jo= (1111 I G am

where X, ¥ etc are the (even) number of times the components D, q etc are specified in
the semi-invariant (thus x +y+...=1).
For the self-avoiding two-polymer Hamiltonian (5.1), the partmon function is

Z(J,, Jg, h)= Tre®, - o 3 (A1)

InZ may again be expanded in powers of J, and J; about J, = J, = 0. The termin JJ3
is represented.as the sum of contributions for all topologically distinct connected graphs
with -M lines labelled (pa, Qa, - --) (to be referred to-as a lines) and N lines labelled
(De» gs» - - -) (B lines). These labels represent components of the field theory such that
there are n possible oomponents subscripted e, and n possible components subscripted

B.
'In terms of the partition function, the correlation functions (5.3), (5.4) and (5.5)are

o I Z(, T B A
X(JS)_? ahl°3hl‘ he 0’
&' In Z(J,, Js, (A1
Cull)= ,Zk,ahls dh;*3h;2 8k *
32, Jsh ) (A

G4(Ja, Jg) ——Elahl ahl <ohleohle

The external leg representing differentation with respect to hf,.’ iscalledad leg, and
the semi-invariant of order [ is defined by

hO

. 8" In Zy(h) : ALS)
W(m;p°’q“"""pﬂ’q""")’°=ah‘,’:ah:’,.=...a‘;:‘,’:ah:’:... p=0 (

. . . s
where Zy(h) = Z(0, 0, k); p,, ps etc may be any of their respective sets of n compone®
and [ is the total number of components specified. lowitg

Each r-rooted graph whether for y or G, is evaluated according t0 the
rules.
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Hg)?por each &-line write a factor :Is.

(bj For each vertex, labelled m, wgite a factor M(m; Pas Gas - - - » Py Gps - - Jlo where
,‘:.';;vt‘he number of lines and external legs terminating at the vertex and
. ¢...., s s> - - ) are their component labels.

{¢) Sum the component label of each line freely over its n possible values.

(d) Sum all the internal vertices and the external vertices j, k, [, over all lattice sites,
pot keep the external vertex, i, rooted. ' ;

{¢) Divide by the symmetry factor appropriate to the r-rooted graph. (When
aldlating the symmetry factor an « line must never be interchanged with a B line.)

Again; a large number of graphs can be omitted because they have a zero
metribution. There are two distinct causes of this: (@) as before, any semi-invariant
putaining an odd number of any particular component is zero, and so any graph with an
odnumber of lines and external legs at any vertex has a zero contribution. Further any

with an odd number of « lines and a legs or B lines and B legs at any vertex also
psazero contribution. (b) In the spirit of the original argument of de Gennes (1972),
aygraph which contains an isolated loop of 8 lines has a free sum over the n possible
smponents, and has a zero contribution in the limit n > 0. An isolated loop of, say, «
fes is not connected directly or by any connected sequence of a lines to an « leg.

Itis for these reasons that x(J,), say, does not depend on Jp. Since the graphs
matributing to x(J,) have two a legs, any B8 lines in the graphs will produce either at
ksttwo vertices with an odd number of B lines or isolated loops of B lines. Such graphs
fove a zero contribution. : _

The semi-invariants are determined by (A.15)." Using the two-polymer Hamilto-
#an-(5.1) and writing the constraint (5.2) as a § function, one finds that the semi-
amariants are identical to (A.7), (A.8) and (A.9) with the general result (A.10), but now
pgetcmay be any of the 2n components (1,, ..., 1, 1g, . . ., Hg).
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